Eventsourcing - You are
doing it wrong

Eventsourcing - You are doing
It wrong because | know best

Eventsourcing - You are maybe
doing It wrong because we
made some mistakes along the

way and so will you, | guess.
This Is difficult because there
are no easy right/wrong
answers only trade-offs.

Eventsourcing - You are
Probably doing it wrong

[—

.
-

-

—

€S

. -ﬁ ..—.

_.

e o B

il
B=
s S JA- h
e GETTE s
=oE ! -l
|]|;l "ﬁl
Sk 4 7 e
o JL. -4
= , % gt Ll
x p &v_ ¥ O 3
=]
= e [

.,
et
[l .7 r..rm. w Iy (R sy
e) TS
-)
o
— \
- | Soca Loy
..N- | i X » ..\.A&«”&ﬁ»‘(?&.ﬁt
z fi S .
58 o - N
i DS ! - U

Senacor Technolog

Are YOU building microservices?
Are YOU doing Domain Driven Design?
Are YOU applying eventsourcing?
Are YOU using Kafka as an eventstore?

@koenighotze

LY,

-

--————

B .
\
N &
-
.
N

e

-

- N -

paw oy A
i
AR

A

-
e

lypical misconceptions
Patterns “we" found useful
Traps to avoid
Not a Kafka-rant
What works for us, might not work for
you and the other way around

What we’ll cover!

A

@koenighotze

Y.} J‘ 2ol
4
iwh bl

Vi

Eventsourcing from an architects perspective

@koenighotze

Microservice

@koenighotze

Never mind the detatils.
That i1s eventsourcing magic.
Just do the Right Thing!

“Just” In Action

@koenighotze

The 1dea In basic terms

Domain driven design
Event driven architecture
Distributed systems

Start with your domain
Find the bounded contexts
Find the root aggregates
Find events In your
ubiquitous language

@koenighotze

Eventstore

Stored in eventstore using
unique identifiers

Stored as data and event type,
typically ordered in creation
order

Hydrated events

result 1in Derives current

state from
stream of events

Aggregate

butilds

Read model -

can be stored as a

Projection

@koenighotze

User-Stream

UserRegistered UserOnboarded UserRelocated

email: foo@bar.de

address: .. newAddress: ..

userId: 9714de5c..

__;>.

Direction of tuime

@koenighotze

Represents

the user at

the time of
the last

event read

User-9714de5c-b7ff-46f4-af36-6060960b24c5

UserCreated UserOnboarded UserRelocated

userl d: 9714de5c..

User Aggregate

userId: 9714deb5c..
email: foo@bar.de

address:

<new address>

@koenighotze

mailto:foo@bar.de

Eventsourcing helps answering the question
of dealing with data in distributed systems In
a scalable way.

It makes the dynamics of your systems
explicit as first class concepts

@koenighotze

@koenighotze

Read models are local hydrates of
the events stored in specific streams

readModel = Stream.of(events)
.leftFold(Chandlers)

How can we handle read
models?

“Just” use a local
database

@koenighotze

User
Microservice

last event

user id user name email street

Ta

9741 ... 3 David foo@bar.de

userld: 971l4debc.. email: foo@bar.de newAddress: ..
address: ..

@koenighotze

User
Microservice

lJast event
id

4 qux@baze

user name email street

user id

userld: 971l4debc.. email: foo@bar.de newAddress: ..
address: ..

@koenighotze

mailto:qux@ba.ze

User
Microservice

userId: 9714deSc.. email: foo@bar.de newAddress: ..
address: ..

@koenighotze

Challenges?

Eventual consistency
Replays
Re-deliveries
Operational complexity

You may not need a read model

lypical strategies for storing events

Maybe all events of an aggregate
type In a single stream?

@koenighotze

B User A] User B] User C] User D

@koenighotze

@koenighotze

GET /users/B

User
Microservice

@koenighotze

GET /users/B

handlers = {
'UserCreated’': (current, event) => {},
'UserOnboarded': (current, event) => {},
'UserDeleted’:
User \

Microservice

aggregate = readAggregateFromStream(
user ',
B
11
fromStartOfStream,
handlers

@koenighotze

GET /users/B

handlers = {
'UserCreated"': (:) => {},
'UserOnboarded': (:) => {},
"UserDeleted’

User
Microservice

aggregate = readAggregateFromStream(
‘user ',
IBI,
i},
fromStartOfStream,
handlers

@koenighotze

Consistent read
No operational overhead
Super-simple programming logic

But, what about speed?

@koenighotze

What about queries like “all
users with age > 187

@koenighotze

Adult-Users-Projection

|

@koenighotze

But | can use a readmodel
for fast validation, can |?

@koenighotze

Maybe not

@koenighotze

Check 1f

Account account holds Account

m m n m
Microservice enough money Mlcroseruce

Check 1f
account holds
enough money

MoneyWithdrawn

Mone yw itthdrawn Y Y[—vDenos Lt

- - amount: 100 EUR
I " J _ y

@koenighotze

Validation against a read model Is prone to
Inconsistencies

Prefer validating against the eventstore itself

@koenighotze

Most event handlers are neither CPU
or 10 intensive
Prefer small aggregates, If it makes
sense In your domain
Measure and Introduce persistent
read models only If nheeded

@koenighotze

Iransactions, concurrency
and your eventstore

How can we guarantee
correctness when writing?

@koenighotze

“Only withdraw money, If the bank
account holds enough money! *

*Actually, a real bank would not want such a business rule. They earn money if you overdraw
your account. An overdraft fee i1s one of the most expensive fees banks charge. Just saying..

@koenighotze

Are YOUR systems single-threaded?

@koenighotze

Account Account Account
Microservice Microservice Microservice

MoneyWithdrawn MoneyDeposited MoneyWithdrawn

amount: 97 EUR amount: 50 EUR amount: 10 EUR

Account-123

MoneyDeposited

amount: 100 EUR

@koenighotze

The correctness of the
business result
depends on the order
of events

@koenighotze

MoneyDeposited

amount: 100 EUR | 100 EUR

MoneyWithdrawn

lamount: 10 EUR I

MoneyDepostited

amount: 50 EUR 140 EUR

@koenighotze

_et's shuffle

MoneyDepostited

amount: 100 EUR I 100 EUR

MoneyWithdrawn

amount: 10 EUR I 90 EUR

MoneyWithdrawn

amount: 97 EUR l 140 EUR

MoneyDeposited

amount: 50 EUR 43 EUR

@koenighotze

The aggregate Is responsible for
enforcing business invariants

@koenighotze

amount: 50 EUR

I want in!

Not i1f you mess up my
internal business rules!

@koenighotze

“Just add a database
In front of your
eventstore!

@koenighotze

=1

Couchbase
Kafka Connect SOrde.ar
S | ervice
ource / Q \
Order Q(__

// Order
Proposed \Q Validated

Event Event

KAFKA

https://www.confluent.io/blog/messaging-single-source-truth/

@koenighotze

Quick tip for finding friends in ops:

Ask them to “just” Install and maintain
production ready Kafka and
Couchbase installations in the Cloud

@koenighotze

Optimistic concurrency control

From Wikipedia, the free encyclopedia

Optimistic concurrency control (OCC) is a concurrency control method applied to
transactional systems such as relational database management systems and software

transactional memory. OCC assumes that multiple transactions can frequently complete
without interfering with each other. While running, transactions use data resources without

acquiring locks on those resources. Before committing, each transaction verifies that no other
transaction has modified the data it has read. If the check reveals conflicting modifications,
the committing transaction rolls back and can be restarted.!'! Optimistic concurrency control
was first proposed by H.T. Kung and John T. Robinson.[2]

https://en.wikipedia.org/wiki/Optimistic_concurrency_control

@koenighotze

0CC assumes that multiple transacttions
can frequently complete without
tnterfering with each other.

@koenighotze

~each transaction verifies that no other
transaction has modified the data 1t has
read..

@koenighotze

The happy path

Account

lastEventNumber: 5
MoneyWithdrawn

/holderId: -
accountNumber: .. amount: 10 EUR
amount: ..

Account-123)

MoneyDepof&ttied
eventNumber{ 5

amount: 100 EUR

@koenighotze

Account.lastEventNumber(5)

Stream.lastEventNumber(5)

@koenighotze

Account

lastEventNumber: 5
MoneyWithdrawn

/holderId: -
accountNumber: .. amount: 10 EUR
amount: ..

Account-123

MoneyDeposited
eventNumber: 5 eventNumber: 6

amount: 100 EUR

@koenighotze

The not-so-happy path

Account

lastEventNumber: _
MoneyWithdrawn
~
~

holderId: ..
accountNumber: ..
amount: ..

N

Account. lastEventNumber(4)

Stream. lastEventNumber(5)

MoneyDepc "
eventNumber { 5

amount: 100 EUR

@koenighotze

PUT /account/1234

Account 000
Microservice

{ aggregate, lastVersionNumber } = readAggregateFromStream(...)
events = executeBusinessLogic(...)

emitEvents('account', '1234', events, lastVersitonNumber)

account-12
34

@koenighotze

PUT /account/1234

Account
Microservice

{ aggregate, lastVersionNumber } = readAggregateFromStream(...)
events = executeBusinessLogic(...)

emitEvents('account', '1234', events, lastVersionNumber)

account-12
34

@koenighotze

PUT /account/1234

Account
Microservice

{1 aggregate, lastVersionNumber } = readAggregateFromStream(...)
events = executeBusinessLogic(...)

emitEvents('account’, '1234', events, lastVersitonNumber)

account-12
34

@koenighotze

And Kafka?

Kafka / KAFKA-2260
8° Allow specifying expected offset on produce

Details
Type: £ Improvement Status: | OPEN |
Priority: v Minor Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: producer
Labels: None

Description

I'd like to propose a change that adds a simple CAS-like mechanism to the Kafka producer. This update has a small footprint, but enables a
bunch of interesting uses in stream processing or as a commit log for process state.

v Andy Bryant added a comment - 27/Jul/18 04:14

«= Would prove very handy in event source based designs

v Russell Ferriday added a comment - 9 hours ago

This would enable full-on eventsourcing on Kafka, without having to restrict to single-thread designs.
One example of a great (=250 github star) FOSS project being held back by this:

https://github.com/johnbywater/eventsourcing/issues/108

Can we see this soon?

@koenighotze

YN - P W ACLA DN
Kafka / KAFKA-22060

= =

Allow specifying expected offset on produce

Details
Improvement Status: OPEN
Priority: v Minor Unresolved

None =ix Version/s: None

..added a comment - 27/Jul/18 04:14

« Would prove very handy in event source based designs

Andy Bryant added a comment - 27/Jul/18 04:14

& Would prove very handy in event source based designs

Russell Ferriday added a comment - 9 hours ago

This would enable full-on eventsourcing on Kafka, without having to restrict to single-thread designs.
One example of a great (>250 github star) FOSS project being held back by this:

Hne/laithith coamlichnhwvwatar/avantent ircinal/iceriac /108
ntt pPS.//glitnu D.com/ joni 1D ywalter/evenisourcing/iIssues/ 108

Can we see this soon?

@koenighotze

Kaftka / KAFKA-2260
Allow specifying expected offset on produce

Details
[ype: Improvement Status: | OPEN
Priority: v Minor Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Type: o Imprc Status:
Priority: v Minor Resolution: Unresolved
Affects Version/s: None Fix Version/s: None

Andy Bryant added a comment - 27/Jul/18 04:14

& Would prove very handy in event source based designs

Russell Ferriday added a comment - 9 hours ago

This would enable full-on eventsourcing on Kafka, without having to restrict to single-thread designs.
One example of a great (>250 github star) FOSS project being held back by this:

https://github.com/johnbywater/eventsourcing/issues/108

Can we see this soon?

@koenighotze

Advantages of OCC?

Scalability and no locks
Consistency

Design choice

Super-simple programming logic

.
-

et
Z:

\/

N \"".
»

S

-~ |
I
N AN

SN

. m‘l
_im

\‘ ‘|
N

o
AT
e
~ -
'« *a
&_\

93

RSN
. e R o
VT - e
ST T i e
s W= % a\”f! - 3 \%..\ .
,ww\\\\v_\«.x\u....p.a\\.%‘,..\\x

T~ s L
- et - ‘\\ol‘&‘\.\‘u‘w\

r\U\\\\ 45
Lt

Z \\\\.\\\ &7
i i

'~ -~

»”.,

{4
!

7 s \
; 0&. ._.VNN,.»
.Q\’

o
! ..m..nwyw .,

i

»

o BT

How can we deal with
versions without going crazy?

@koenighotze

“Just” use semantic
versioning and types

@koenighotze

Consumer

@koenighotze

...then change some event types

@koenighotze

Consumer

@koenighotze

Consumer

i
e

@koenighotze

InvalidClassException ObjectStreamException {

@koenighotze

Gosh..."just” apply
Double Write

@koenighotze

@koenighotze

D | D) WS) W

Should I process V1? Consumer

@koenighotze

Or wait for a V2..which
might never arrive?

Consumer

@koenighotze

MoneyDeposited V]
MoneyDeposited_v2

MoneyDeposited_v100

MoneyDeposited_vlHandler
MoneyDeposited_vZ2Handler

MoneyDeposited v100Handler

@koenighotze

Upcaster

f: vli->v2

V

Consumer

@koenighotze

5 months later...

—h =h

-h =h

: v1->v2
: Vv2=->Vv3
: v3->v4

: v97->v98
: v98->v99
: v99->v100

A4

Consumer

@koenighotze

Good luck maintaining that monster

Prefer simple, text-based.
numan readable events

@koenighotze

Fancy speak for JSON

@koenighotze

{
"eventType": "MoneyTransferred",
"aggregateld": "1234",
"i{ban": "DE12",
"accountNumber": "12312312",
"amount": 10,
"currency": "EUR"

}

@koenighotze

And correctness?

“Js” generate
classes for JSON
mapping!

@koenighotze

UserCreatedEvent {
UUID requestld;

@koenighotze

NGINX $request 1id
unique request itdentifier

generated from 16 random bytes,
th hexadecitmal (1.11.0)

@koenighotze

“Oh, you changed the request id
from uuid to any arbitrary string”

@koenighotze

String-ly typed events work really well

@koenighotze

Weak schema to the rescue

{
"$schema": "http://json-schema.org/draft-07/schema",

"title": "UserCreated",
"description”: "Creates a user",
"type": "object",
"properties": {
"userId": {
"description”: "The new user's ID",
"type": "string",
"format": "uuid"
}
}s

"additionalProperties”: false,
"required": [
"userId"

]

@koenighotze

"$schema": "http://json-schema.org/draft-07/schema",
"title": "UserCreated",

"description": "Creates a user",
"type": "object",
"properties": {
"userId": {
"description”: "The new user's ID",
"type": "string",
"format": "uuid"

}
b

‘additionalProperties”: false,
"required": |
"userId"”

]

@koenighotze

"$schema": "http://json-schema.org/draft-07/schema",
"title": "UserCreated",

"description”: "Creates a user",
"type": "object",
properties”:
"userId": {
"description”: "The new user's ID",

"type": "String",
"format": "uuid"

}
¥

"additionalProperties”: false,
"required": |
"userId"”

|
}

@koenighotze

assertIsValid(eventData, ajv.comptile(schema))
event = newEkEvent(

{
aggregateld,

aggregatelype,
eventData

@koenighotze

assertIsValid(eventData, ajv.compile(schema))

event = newcvent(

{
aggregateld,

aggregatelype,
eventbData

@koenighotze

Schema as a description
not as a contract

@koenighotze

handles Consumer

emits — —

Producer

asserts
correctness
using

@koenighotze

What about putting
versioned logic In handlers?

@koenighotze

MoneyTransferred
eventId: 5

amount: 97 USD

@koenighotze

handleMoneyTransfered({ amount, currency }) 1
(currency !== 'EUR') {
rate = fxCalculator.currentExchangeRate(currency, 'EUR')
.transferVolume = rate * amount

{

.transfterVolume = amount

handleMoneyTransfered(1 amount,
(currency !== 'EUR') {
rate = fxCalculator.currentExchangeRate(currency, 'EUR')
.transferVolume = rate * amount

{

.transftferVolume = amount

@koenighotze

A) I

b
i l
¢ g
‘ i
\

. P

—"‘.

handleMonevTransfered({1 amount, currency }) {
(currency !== 'EUR') {
rate = fxCalculator.currentExchangeRate(currency, 'EUR')
.transterVolume = rate * amount

{

.transfterVolume = amount

@koenighotze

handleMoneyTransfered({ amount, currency }) 1
(Fruirrencv 1== 'FIIR") {

rate = fxCalculator.currentExchangeRate(currency, 'EUR')
.transtervolume = rate * amount

{

.transftferVolume = amount

@koenighotze

Bravo, now your expense report of 2017
depends on today s exchange rates

Creating an event must encapsulate all
data that lead to the emitting of the event

@koenighotze

MoneyTransferred
eventlId: 5

amount: 97 USD
exchangeRate": {

"base'": "USD",
"date": "2018-02-13",
"rates": { "EUR": 0.806942 }

@koenighotze

Side-effect
manifested as
event payload

exchangeRate": {
"base": "USD",
"date": "2018-02-13",
"rates": { "EUR": 0.806942 }

@koenighotze

Reduce stream-replay headaches by
storing side-effects as event results

@koenighotze

Reusing event data?

Transactionledger Budget Planer
Microservice Microservice

@koenighotze

Transactionledger Budget Planer
Microservice Microservice

TransactionBooked TransactionCategorised

@koenighotze

“Just” copy data into
different events, “just’
S0 convenient

@koenighotze

TransactionBooked

transactionlId:
accountNumber:
amount:
currency:
bookingTime:
purpose:

@koenighotze

TransactionBooked TransactionCategorised

transactionld: ..
accountNumber: ..
amount: ..
currency: ..
bookingTime: ..
purpose: ..

tagld: ..
categoryName: “..”
transactionld: ..
amount: ..
currency: ..

@koenighotze

TransactionBooked TransactionCategorised

transactionlId: ..

accountNumber: .. tagld: ..

categoryName: “.."

amount: .. transactionId: ..
currency: amount:

bookingTime: ..

purpose: .. currency. ..

@koenighotze

But I need to
display the
transaction
purpose, too

Budget Planer
Microservice

@koenighotze

TransactionBooked TransactionCategorised

purpose: ..

@koenighotze

The lossy event

Only reference aggregates via their root id

@koenighotze

TransactionBooked TransactionCategorised

transactionlId: ..

transactionlId: ..

@koenighotze

tagId: ..

Iy categoryName: “.."”
purpose: “.."
transactionld: ..
amount: ..
currency: ..

TransactionBooked TransactionCategorised

transactionlId: .. transactionld:

@koenighotze

Good candidate for tagld: ..

a read model resp. ;3:3322¥N3mg=

projection btw. transactionld: ..
amount: ..
currency: ..

transactionld: .. transactionld:

@koenighotze

Don't copy parts of an event.
Prefer building use case
specific projections

@koenighotze

How can you handle event data
over a long period of time?

@koenighotze

You don't

“Just” take a
snapshot of the

@koenighotze

Year's end procedure

Year end — also known as an accounting reference
date — 1s the completion of an accounting period.
At this time, businesses need to carry out specific
procedures to close their books.

https://debitoor.com/dictionary/year-end

@koenighotze

businesses need to carry out specific
procedures to close their books.

https://debitoor.com/dictionary/year-end

@koenighotze

Copy-Transform

a.k.a. eventsourcing refactoring powertool

@koenighotze

2017

@koenighotze

2018

@koenighotze

Same idea If you need to
remodel your domain!

@koenighotze

The devil I1s In the detall

Dealing with
errors

MoneyTransferred
eventId: 231233

amount: 97(Euro
withdrawnAt TZ018-08-30T08:58:26.624

@koenighotze

“Just” update the
event in the
eventstore!

@koenighotze

@koenighotze

O

@koenighotze

Consumer

@koenighotze

| already |
know that

Update .. event.

Why
should |
re-read?

Consumer \ (V) /

@koenighotze

Ok. Then “just” use
compensation events

@koenighotze

The cancelled or corrected event

@koenighotze

Partial compensation?

@koenighotze

MoneyTransferred
eventld: 1

amount: 97 Euro

MoneyTransferAmountCorrected
eventld: 2

/amount: 97 EUR
eventld: 1

@koenighotze

Full compensation
- do as accountants do

@koenighotze

MoneyTransferred
eventld: 1

amount: 97 Eurg

MoneyTransfgrCancelled
evenfld: 2

4

reasonEventId: 1
reason: ..

MoneyTransferred
eventld: 3

amount: 97 EUR

@koenighotze

The full compensation makes the
reason for compensation explicit

@koenighotze

Consumers must mostly be forward and
backward compatible
Beware Lossy events
Prefer projections to event data copying
Refer across aggregates using root ids

@koenighotze

W
O
C
U
=3
=
o
O
o
al
-
o

@))
—c
>
-
O
N
)
C .
D
>
D
®
-
(O

*x X %

P S

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)

* *

* o ok

*x X %

Article 17

Right to erasure (‘right to be forgotten’)

1. The data subject shall have the right to obtain from the controller the erasure of personal data concerning him or
her without undue delay and the controller shall have the obligation to erase personal data without undue delay where

one of the following grounds applies:

X

“Just” encrypt and
throw the key away

@koenighotze

Every stream Is encrypted
using a stream-specific key

@koenighotze

Payload Payload Payload

’Payload Payload Payload

Payload Payload Payload

@koenighotze

‘Please delete all my data

Deletion Is effectively deleting
the stream-specific key

@koenighotze

Payload Payload ’Payload

Payload ’ Payload

Payload Payload ’Payload

@koenighotze

Key administration
Finding what needs to be deleted
Storage implications
Coding complexity
Dashboards, Monitoring

Being able to delete Is awesome

@koenighotze

Transaction
-lLedger

Bankaccount

@koenighotze

‘Please delete all my data

Cascading deletes with tombstones

@koenighotze

User-456
Deleted

User Bankaccount Transactionledger
Microservice Microservice Microservice

Bank-
ccount-123

Deleted

@koenighotze

deleteStream(‘User-456’)

User Microservice

Eventstore

delete
User-456 emit User-456
tombstone Deleted

event

@koenighotze

et ated. deleteStream(‘Bankaccount-123")

Eventstore

Bankaccount
Microservice emit

tombstone event
delete

Bankaccount-123

Bank-

AccountOpened account-

123
eleted

ownher: user-=-456

@koenighotze

1. The data subject shall have the rj e of personal data concerning him or

her without undue delay and the cont sonal data without undue delay where
one of the following grounds applies:

Dealing with dependent events

Public/private data

User—Public-456

User-Private-456

Schmitz David D-AW-123

@koenighotze

User—Public-456

Keep this *

User-Private-456

Schmitz David D-AW-123

@koenighotze

User—Public-456

User-Private-456

Schmitz David D-AW-123

Delete thtis *

@koenighotze

You may be able to keep
references to the public data

“Just” anonymise the

@koenighotze

*x X %

Recital 26
EU GDPR

(26) The principles of data protection should apply to any information
concerning an identified or identifiable natural person.

Personal data which have undergone pseudonymisation, which could be
attributed to a natural person by the use of additional information should

be considered to be information on an identifiable natural person.

x o *

*x X %

Personal data which have undergone pseudonymisation, which could be
attributed to a natural person by the use of additional information should
be considered to be information on an identifiable natural person.

Y

Surprise: No easy answers

@koenighotze

Ask your lawyer or CISO

@koenighotze

koenighotze

ES + DDD =¥/
Needs more up-front design
You can refactor, you can clean up
Not enough In-depth books
Avoid frameworks
Beware: “just...” or “...made easy

@koenighotze

Forget this talk...read these:

The Dark Side of Event Sourcing:
Managing Data Conversion pe—

Michiel Overeem!, Marten Spoor!, and Slinger Jansen? Ve rSion i ng in an Event
— Sourced System

A journey into high scalability, availability,
and maintainability with Windows Azure

patterns & practices

v
Effective Aggregate Design e TS [(Q,_ _<
Part I: Modeling a Single Aggregate

Vaughn Vernon: vvernon@shiftmethod.com

@koenighotze

http://files.movereem.nl/2017saner-eventsourcing.pdf
http://dddcommunity.org/library/vernon_2011/
https://leanpub.com/esversioning
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj554200(v=pandp.10)

Choose the right tool?

The open-source, functional database with
Complex Event Processing in JavaScript.

@koenighotze

Thank you!

Questions?
Comments?
Blame?
@Koenighotze

@koenighotze

