
@koenighotze

Eventsourcing - You are
doing it wrong

@koenighotze

Eventsourcing - You are doing
it wrong because I know best

@koenighotze

Eventsourcing - You are maybe
doing it wrong because we

made some mistakes along the
way and so will you, I guess.
This is difficult because there

are no easy right/wrong
answers only trade-offs.

@koenighotze

Eventsourcing - You are
probably doing it wrong

@koenighotze

David Schmitz

Senacor Technologies

@koenighotze

@koenighotze

Are YOU building microservices?
Are YOU doing Domain Driven Design?

Are YOU applying eventsourcing?
Are YOU using Kafka as an eventstore?

@koenighotze

@koenighotze

Typical misconceptions
Patterns “we” found useful

Traps to avoid
Not a Kafka-rant

What works for us, might not work for
you and the other way around

@koenighotze

What we’ll cover!

@koenighotze

Eventsourcing bootcamp

@koenighotze

Eventsourcing from an architects perspective

@koenighotze

Kafka

Microservice

Read
modelEvents

Microservice

Read
modelEvents

Microservice

Read
modelEvents

THE DATA LAKE!

@koenighotze

Kafka

Microservice

Read
modelEvents

Microservice

Read
modelEvents

Microservice

Read
modelEvents

THE DATA LAKE!

Never mind the details.
That is eventsourcing magic.
Just do the Right Thing!

@koenighotze

“Just” in Action

@koenighotze

The idea in basic terms

@koenighotze

Domain driven design
Event driven architecture

Distributed systems

@koenighotze#DevExperience18 #10TipsMicroservices

Start with your domain
Find the bounded contexts
Find the root aggregates

Find events in your
ubiquitous language

@koenighotze

Aggregate

Event

Stream

Eventstore

Read model Projection

Stored as data and event type,
typically ordered in creation

order

Stored in eventstore using
unique identifiers

Derives current
state from

stream of events

Hydrated events
result in

builds

can be stored as a

@koenighotze

User-Stream

UserOnboarded

email: foo@bar.de
address: …

UserRegistered

userId: 9714de5c…

UserRelocated

newAddress: …

Direction of time

@koenighotze

User Aggregate

userId: 9714de5c…
email: foo@bar.de
address: <new address>

Represents
the user at
the time of
the last
event read

mailto:foo@bar.de

@koenighotze

Eventsourcing helps answering the question
of dealing with data in distributed systems in

a scalable way.

It makes the dynamics of your systems
explicit as first class concepts

@koenighotze

Read models

…and why you may not need to them (initially)

@koenighotze

Read models are local hydrates of
the events stored in specific streams

@koenighotze

readModel = Stream.of(events)
 .leftFold(handlers)

@koenighotze

How can we handle read
models?

@koenighotze

“Just” use a local
database

@koenighotze

User
Microservice

Read
model
(SQL)

user id last event
id user name email street

9741… 3 David foo@bar.de …

4532… 7 Martin null …

@koenighotze

User
Microservice

Read
model
(SQL)

user id last event
id user name email street

9741… 4 David qux@ba.ze …

4532… 7 Martin null …

mailto:qux@ba.ze

@koenighotze

User
Microservice

Read
model
(SQL)

Neo4J

@koenighotze

Challenges?

@koenighotze

Eventual consistency
Replays

Re-deliveries
Operational complexity

@koenighotze

You may not need a read model

@koenighotze

Typical strategies for storing events

@koenighotze

Maybe all events of an aggregate
type in a single stream?

@koenighotze

Users

User A User B User C User D

@koenighotze

User-A User-C User-D

Users

User-B

Better: One stream per
aggregate

@koenighotze

User
Microservice

GET /users/B

User-B

@koenighotze

User
Microservice

GET /users/B

User-B

@koenighotze

User
Microservice

GET /users/B

User-B

@koenighotze

Consistent read
No operational overhead

Super-simple programming logic

@koenighotze

But, what about speed?

@koenighotze

What about queries like ‘all
users with age > 18’?

@koenighotze

User-A User-C User-D

Adult-Users-Projection

User-B

@koenighotze

But I can use a readmodel
for fast validation, can I?

@koenighotze

Maybe not

@koenighotze

Account
Microservice

Read
model
(SQL)

MoneyWithdrawn

Check if
account holds
enough money

Account
Microservice

MoneyWithdrawn

Check if
account holds
enough money

@koenighotze

Validation against a read model is prone to
inconsistencies

Prefer validating against the eventstore itself

@koenighotze

Most event handlers are neither CPU
or IO intensive

Prefer small aggregates, if it makes
sense in your domain

Measure and introduce persistent
read models only if needed

@koenighotze

Transactions, concurrency
and your eventstore

@koenighotze

How can we guarantee
correctness when writing?

@koenighotze

“Only withdraw money, if the bank
account holds enough money!”*
*Actually, a real bank would not want such a business rule. They earn money if you overdraw
your account. An overdraft fee is one of the most expensive fees banks charge. Just saying…

@koenighotze

Are YOUR systems single-threaded?

@koenighotze

Account
Microservice

Account
Microservice

Account
Microservice

Account-123

…

MoneyWithdrawn

amount: 97 EUR

MoneyDeposited

amount: 50 EUR

MoneyWithdrawn

amount: 10 EUR

MoneyDeposited

amount: 100 EUR……

@koenighotze

The correctness of the
business result

depends on the order
of events

@koenighotze

MoneyWithdrawn

amount: 97 EUR

MoneyDeposited

amount: 100 EUR

MoneyDeposited

amount: 50 EUR

100 EUR

MoneyWithdrawn

amount: 10 EUR 90 EUR

-7 EUR

140 EUR

@koenighotze

Let’s shuffle

@koenighotze

140 EUR

MoneyWithdrawn

amount: 97 EUR

MoneyWithdrawn

amount: 10 EUR

MoneyDeposited

amount: 100 EUR

MoneyDeposited

amount: 50 EUR

100 EUR

90 EUR

43 EUR

@koenighotze

The aggregate is responsible for
enforcing business invariants

@koenighotze#DevExperience18 #10TipsMicroservices

Account-123

MoneyWithdrawn

amount: 50 EUR

I want in!

Not if you mess up my
internal business rules!

Account balance:
30 EUR

@koenighotze

“Just” add a database
in front of your

eventstore!

@koenighotze#DevExperience18 #10TipsMicroservices
https://www.confluent.io/blog/messaging-single-source-truth/

@koenighotze

Quick tip for finding friends in ops:

Ask them to “just” install and maintain
production ready Kafka and

Couchbase installations in the Cloud

@koenighotze#DevExperience18 #10TipsMicroservices

https://en.wikipedia.org/wiki/Optimistic_concurrency_control

@koenighotze#DevExperience18 #10TipsMicroservices

https://en.wikipedia.org/wiki/Optimistic_concurrency_control

OCC assumes that multiple transactions
can frequently complete without
interfering with each other.

@koenighotze#DevExperience18 #10TipsMicroservices

https://en.wikipedia.org/wiki/Optimistic_concurrency_control

…each transaction verifies that no other
transaction has modified the data it has

read…

@koenighotze

The happy path

@koenighotze

Account
lastEventNumber: 5

Account-123
MoneyDeposited
eventNumber: 5

amount: 100 EUR

… … …

MoneyWithdrawn

amount: 10 EUR
holderId: …
accountNumber: …
amount: …

@koenighotze

Account-123

MoneyWithdrawn

amount: 10 EUR

Account
lastEventNumber: 5

holderId: …
accountNumber: …
amount: …

MoneyDeposited
eventNumber: 5

amount: 100 EUR

… … …

Account.lastEventNumber(5)
==

Stream.lastEventNumber(5)

@koenighotze

Account
lastEventNumber: 5

Account-123
MoneyDeposited
eventNumber: 5

amount: 100 EUR

MoneyWithdrawn

amount: 10 EUR
holderId: …
accountNumber: …
amount: …

eventNumber: 6

… … …

@koenighotze

The not-so-happy path

@koenighotze

Account-123

… … …

MoneyDeposited
eventNumber: 5

amount: 100 EUR

Account
lastEventNumber: 4

holderId: …
accountNumber: …
amount: …

Account.lastEventNumber(4)
==

Stream.lastEventNumber(5)

MoneyWithdrawn

amount: 97 EUR

@koenighotze

Account
Microservice

PUT /account/1234

account-12
34

@koenighotze

Account
Microservice

account-12
34

PUT /account/1234

@koenighotze

Account
Microservice

account-12
34

PUT /account/1234

@koenighotze

And Kafka?

@koenighotze#DevExperience18 #10TipsMicroservices

@koenighotze#DevExperience18 #10TipsMicroservices

…

@koenighotze#DevExperience18 #10TipsMicroservices

@koenighotze

Advantages of OCC?

@koenighotze

Scalability and no locks
Consistency

Design choice
Super-simple programming logic

@koenighotze

Versions, up-front-design and
breaking things down the road

@koenighotze

How can we deal with
versions without going crazy?

@koenighotze

“Just” use semantic
versioning and types

@koenighotze#DevExperience18 #10TipsMicroservices

Account-123

MoneyDepositedAccountOpened events-1.0.0.jar

Producer

Consumer

@koenighotze

…then change some event types

@koenighotze#DevExperience18 #10TipsMicroservices

Account-123

MoneyDepositedAccountOpened events-1.0.0.jar

Producer

Consumer

@koenighotze#DevExperience18 #10TipsMicroservices

Account-123

……

events-1.0.0.jar

Producer

Consumer

events-2.0.0.jar

MoneyDeposited

@koenighotze#DevExperience18 #10TipsMicroservices

@koenighotze

Gosh…“just” apply
Double Write

@koenighotze

Account-123

…… MoneyDepositedV1 MoneyDepositedV2

@koenighotze

Account-123

……

ConsumerShould I process V1?

MoneyDepositedV1 MoneyDepositedV2

@koenighotze

Account-123

……

Consumer
Or wait for a V2…which
might never arrive?

MoneyDepositedV1 MoneyDepositedV2

@koenighotze

MoneyDeposited_v1
MoneyDeposited_v2

…
MoneyDeposited_v100

@koenighotze

MoneyDeposited_v1Handler
MoneyDeposited_v2Handler

…
MoneyDeposited_v100Handler

@koenighotze

Upcaster

@koenighotze#DevExperience18 #10TipsMicroservices

Account-123

A V1.0……

Consumer

Upcaster

A V1.0 B V2.0

A V2.0

A V2.0
f: v1->v2

@koenighotze

5 months later…

@koenighotze#DevExperience18 #10TipsMicroservices

Account-123

A V1.0……

Consumer

Upcaster

B V2.0

f: v1->v2
f: v2->v3
f: v3->v4

…

f: v97->v98
f: v98->v99
f: v99->v100

@koenighotze

Good luck maintaining that monster

@koenighotze

Prefer simple, text-based,
human readable events

@koenighotze

Fancy speak for JSON

@koenighotze

@koenighotze

And correctness?

@koenighotze

“Just” generate
classes for JSON

mapping!

@koenighotze

@koenighotze

NGINX $request_id
unique request identifier

generated from 16 random bytes,
in hexadecimal (1.11.0)

@koenighotze

“Oh, you changed the request id
from uuid to any arbitrary string”

@koenighotze

String-ly typed events work really well

@koenighotze

Weak schema to the rescue

@koenighotze

@koenighotze

@koenighotze

@koenighotze

@koenighotze

@koenighotze

Schema as a description
not as a contract

@koenighotze

Producer

Event

Schema

Consumerhandles
emits

asserts
correctness
using

@koenighotze

What about putting
versioned logic in handlers?

@koenighotze

MoneyTransferred
eventId: 5

amount: 97 USD

@koenighotze

@koenighotze

@koenighotze

@koenighotze

@koenighotze

Bravo, now your expense report of 2017
depends on today’s exchange rates

@koenighotze

Creating an event must encapsulate all
data that lead to the emitting of the event

@koenighotze

MoneyTransferred
eventId: 5

amount: 97 USD
exchangeRate": {
 "base": "USD",
 "date": "2018-02-13",
 "rates": { "EUR": 0.806942 }
}

@koenighotze

MoneyTransferred
eventId: 5

amount: 97 USD
exchangeRate": {
 "base": "USD",
 "date": "2018-02-13",
 "rates": { "EUR": 0.806942 }
}

amount: 97 USD
exchangeRate": {
 "base": "USD",
 "date": "2018-02-13",
 "rates": { "EUR": 0.806942 }
}

Side-effect
manifested as
event payload

@koenighotze

Reduce stream-replay headaches by
storing side-effects as event results

@koenighotze

Reusing event data?

@koenighotze

Transactionledger
Microservice

Budget Planer
Microservice

@koenighotze

TransactionBooked TransactionCategorised

Transactionledger
Microservice

Budget Planer
Microservice

@koenighotze

“Just” copy data into
different events, “just”

so convenient

@koenighotze

TransactionBooked

transactionId: …
accountNumber: …
amount: …
currency: …
bookingTime: …
purpose: …

@koenighotze

TransactionBooked

transactionId: …
accountNumber: …
amount: …
currency: …
bookingTime: …
purpose: …

TransactionCategorised

tagId: …
categoryName: “…”
transactionId: …
amount: …
currency: …

@koenighotze

TransactionBooked

transactionId: …
accountNumber: …
amount: …
currency: …
bookingTime: …
purpose: …

TransactionCategorised

tagId: …
categoryName: “…”
transactionId: …
amount: …
currency: …

@koenighotze

Budget Planer
Microservice

But I need to
display the
transaction
purpose, too

@koenighotze

TransactionBooked TransactionCategorised

transactionId: …
accountNumber: …
amount: …
currency: …
bookingTime: …
purpose: …

tagId: …
categoryName: “…”
transactionId: …
amount: …
currency: …
????

@koenighotze

The lossy event

@koenighotze

Only reference aggregates via their root id

@koenighotze

TransactionBooked TransactionCategorised

transactionId: …
accountNumber: …
amount: …
currency: …
bookingTime: …
purpose: …

tagId: …
categoryName: “…”
transactionId: …

@koenighotze

TransactionBooked TransactionCategorised

transactionId: … transactionId: …

Domain service

tagId: …
categoryName: “…”
purpose: “…”
transactionId: …
amount: …
currency: …

@koenighotze

TransactionBooked TransactionCategorised

transactionId: … transactionId: …

Domain service

tagId: …
categoryName: “…”
purpose: “…”
transactionId: …
amount: …
currency: …

Good candidate for
a read model resp.
projection btw.

@koenighotze

Don’t copy parts of an event.
Prefer building use case

specific projections

@koenighotze

How can you handle event data
over a long period of time?

@koenighotze

You don’t

@koenighotze

“Just” take a
snapshot of the

stream

@koenighotze

Year’s end procedure

@koenighotze

Year end – also known as an accounting reference
date – is the completion of an accounting period.
At this time, businesses need to carry out specific
procedures to close their books.

https://debitoor.com/dictionary/year-end

@koenighotze

https://debitoor.com/dictionary/year-end

Year end – also known as an accounting reference
date – is the completion of an accounting period.
At this time, businesses need to carry out specific
procedures to close their books.

@koenighotze

Copy-Transform

@koenighotze

a.k.a. eventsourcing refactoring powertool

@koenighotze#DevExperience18 #10TipsMicroservices

AccountCreated

…

MoneyTransferred

…

. . .

2017

@koenighotze#DevExperience18 #10TipsMicroservices

AccountCreated

…

MoneyTransferred

…

. . .

Initialized

…

Deactivated

…

. . .

AccountCreated

…

MoneyTransferred

…

2017

2018

@koenighotze#DevExperience18 #10TipsMicroservices

Transactionledger
Microservice

Initialized

…

Deactivated

…

. . .
. . .2017 2018

@koenighotze

Same idea if you need to
remodel your domain!

@koenighotze

The devil is in the detail

@koenighotze

Dealing with
errors

@koenighotze

MoneyTransferred
eventId: 231233

amount: 97 Euro
withdrawnAt: 2018-08-30T08:58:26.624

@koenighotze

“Just” update the
event in the
eventstore!

@koenighotze

@koenighotze

No!

@koenighotze

Account-123

……

Consumer

…… …

@koenighotze

Consumer

Update …

 ¯_(ツ)_/¯

Account-123

…… …… …

I already
know that

event.

Why
should I
re-read?

@koenighotze

Ok. Then “just” use
compensation events

@koenighotze

The cancelled or corrected event

@koenighotze

Partial compensation?

@koenighotze

MoneyTransferAmountCorrected
eventId: 2

amount: 97 EUR
eventId: 1

MoneyTransferred
eventId: 1

amount: 97 Euro
…

@koenighotze

Full compensation
- do as accountants do

@koenighotze

MoneyTransferCancelled
eventId: 2

reasonEventId: 1
reason: …

MoneyTransferred
eventId: 1

amount: 97 Euro
…

MoneyTransferred
eventId: 3

amount: 97 EUR
…

@koenighotze

The full compensation makes the
reason for compensation explicit

@koenighotze

Consumers must mostly be forward and
backward compatible
Beware lossy events

Prefer projections to event data copying
Refer across aggregates using root ids

@koenighotze

GDPR, compliance
and eventsourcing

@koenighotze

GDPR

@koenighotze

@koenighotze

@koenighotze

“Just” encrypt and
throw the key away

@koenighotze

Every stream is encrypted
using a stream-specific key

@koenighotze

Stream

Event Event Event …
PayloadPayload Payload

Stream

Event Event Event …
PayloadPayload Payload

Stream

Event Event Event …
PayloadPayload Payload

@koenighotze

“Please delete all my data”

@koenighotze

Deletion is effectively deleting
the stream-specific key

@koenighotze

Stream

Event Event Event …
PayloadPayload Payload

Stream

Event Event Event …
PayloadPayload Payload

Stream

Event Event Event …
PayloadPayload Payload

?

@koenighotze

Key administration
Finding what needs to be deleted

Storage implications
Coding complexity

Dashboards, Monitoring

@koenighotze

Being able to delete is awesome

@koenighotze

User

Bankaccount Transaction
-ledger

@koenighotze

“Please delete all my data”

@koenighotze

Cascading deletes with tombstones

@koenighotze

User
Microservice

Bankaccount
Microservice

Transactionledger
Microservice

User-456
Deleted

Bank-
account-123
Deleted

@koenighotze

User-456

… … …

Eventstore

delete

User-456
Deleted

emit
tombstone
event

User Microservice
deleteStream(‘User-456’)

@koenighotze

Bankaccount-123

AccountOpened

owner: user-456
…

Bankaccount
Microservice

User-456
Deleted

Eventstore

delete

Bank-
account-
123
Deleted

emit
tombstone event

deleteStream(‘Bankaccount-123’)

@koenighotze

@koenighotze

Dealing with dependent events

@koenighotze

Public/private data

@koenighotze

User—Public-456

Id Blue

User-Private-456

Schmitz David D-AW-123

@koenighotze

User—Public-456

Id Blue

User-Private-456

Schmitz David D-AW-123

Keep this

@koenighotze

User—Public-456

Id Blue

User-Private-456

Schmitz David D-AW-123Delete this

@koenighotze

You may be able to keep
references to the public data

@koenighotze

“Just” anonymise the
data

@koenighotze

Recital 26  
EU GDPR

(26) The principles of data protection should apply to any information
concerning an identified or identifiable natural person.

Personal data which have undergone pseudonymisation, which could be
attributed to a natural person by the use of additional information should
be considered to be information on an identifiable natural person.

@koenighotze

Recital 26  
EU GDPR

(26) The principles of data protection should apply to any information
concerning an identified or identifiable natural person.

Personal data which have undergone pseudonymisation, which could be
attributed to a natural person by the use of additional information should
be considered to be information on an identifiable natural person.

@koenighotze

Surprise: No easy answers

@koenighotze

Ask your lawyer or CISO

@koenighotze

That’s it?

@koenighotze

ES + DDD =
Needs more up-front design

You can refactor, you can clean up
Not enough in-depth books

Avoid frameworks
Beware: “just…” or “…made easy”

@koenighotze

Forget this talk…read these:

http://files.movereem.nl/2017saner-eventsourcing.pdf
http://dddcommunity.org/library/vernon_2011/
https://leanpub.com/esversioning
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj554200(v=pandp.10)

@koenighotze

Choose the right tool?

@koenighotze

@koenighotze

Thank you!
Questions?
Comments?

Blame?
@Koenighotze

