@)
s
'
—
O
)
e
C
QL
>
LL]

It wrong

Ing |

You are do

Event sourcing
You are doing it wrong

because | know best

Event sourcing - You are maybe
doing parts of it wrong because we
made some mistakes along the way

and so will you, | guess. This Is
difficult because there are no easy
right/wrong answers; only trade-offs.

" “‘“‘-"'.& -ty - m.~ ¥ o
?--.::,,.‘\"- -y ~
- o e - . e
< P |
- :?. I~ 25 ’ g
» \% Y -2;\'\' “
B S 2
. - e f'
R e ’ ’ -

Event sourcing

You are probably doing it wrong

IREREIFRIE

]

.go'f

.-

X

i

mY

Are

...building microservices?
...doing Domain Driven Design?
...applying event sourcing?
...using Kafka as an event store?

@koenighotze

lypical misconceptions
Patterns “we” found useful
Traps to avoid
Not a Kafka-rant

No silver bullets

@koenighotze

What
we’ll cove
r!

L

Event driven business

"
g 1

I

'WN

- m
. 2 '

I}

=

@koenighotze

.
.—l'ﬂ' '.1 ‘ R '_"!1—", '

Order payed

@koenighotze

@koenighotze

Sehaviour of a domaln made
explicit as a first class concept

@koenighotze

And on a technical level?

How to represent cata and
how to represent behaviour?

@koenighotze

Microservice

@koenighotze

Never mind the details.
That is event sourcing
magic.

Just do the Right Thing!

@koenighotze

é

Direction of tuime

@koenighotze

email: foo@bar.de
address: ..

userld: 9714deb5c.. newAddress: ..

é

Direction of tuime

@koenighotze

userId: email: newAddress:
\ 9714de5c.. \ foo@bar.de -

Projections
hydrate the
state stored
1h a stream

handle User , handle User
Created ~ Onboarded
handle User \
L Relocated

@koenighotze

= . s — —

| State at a certain point in time

f
/
/ ‘
/

Y,
— ,/

I “‘:V \\/ ’/

Represents

the user at

the time of userld: 9714de5c...
the last email: foo@bar.de

address: <new address>
event read

@koenighotze

Read models

@koenighotze

» .

%S

/ -
v’ .
;

¥ ...and why T
(initiatly) SRS

i/ “I‘& /

R
@koenighotze

email: foo@bar.de
address: ..

userld: 9714deb5c.. newAddress: ..

@koenighotze

‘userld: 9714de5c...

p email: foo@bar.de
newAddress: .. address: <new address>

@koenighotze

How can we store read models?

@koenighotze

Just use a local
database

@koenighotze

userId: 9714de5c..

User
Microservice

email: foo@bar.de
address: ..

Read
model

(SQL)

user id

9741...

last event
ird

3

user name

David

email

foo@bar.de

street

4532...

>

Martin

null

@koenighotze

user
Microse

3 David foo@bar.de
-

Martin Nnull

userId: 9714de5c..

@koenighotze

User
Microse

: Jast event :
. - user id i user name email street
4 | David |qux@baze
4532. .. 7 Martin null
Read
mode L
(SQL)

userId: 9714de5c..

@koenighotze

User
Microse
rvice

userId: 9714de5c..

@koenighotze

Challenges?

@koenighotze

Eventual consistency
Zero downtime replays and rebuilds
Re-deliveries and effectively once
Operational complexity

You may not need a read model

@koenighotze

lypical strategies for storing events

|] User A [[] User B] User C [] User D

@koenighotze

odftod (@88 od50g odEba

@koenighotze

User
Microservice

@koenighotze

GET /users/B

handlers = {
'UserCreated’: (C

'UserOnboarded’': (c
'UserDeleted’:

}

User
Microservice

aggregate = readAggregateFromStream(
user ',
B,
{1},
fromStartOfStream,
handlers

@Kkoenighotze

00
GET /users/B @
handlers = {
serCreated’: (
serOnboarded': (
serDeleted’:

User
Microservice

>gateFromStream(

} Each event type has a \
| corresponding handler function |

fromStartOfStream,
L—_I handlers

@koenighotze

GET /users/B *o¢o

handlers = {
'‘UserCreated’: (current, event)

'UserOnboarded': (current, event)
'‘UserDeleted':

}

User
Microservice

aggregate = readAqggregateFromStream
user ', - -
I — —— B,
" How shall events be ~_ {},
handled? a4 fromStartOfStreanm,
bt u) handlers

~

@koenighotze

Consistent read
No operational overhead
Super-simple programming logic

But, what about speed?

@koenighotze

100 events: 66.04/ms

@koenighotze

But, what about queries?

@koenighotze

USERS AGE >= 18

@koenighotze

Build specific
query projections

@koenighotze

odfiog @86 odEbg odibo

@koenighotze

000 oo

@koenighotze

Handlers are often trivial
Prefer small aggregates
Measure first
Introduce read models only
If needed

@koenighotze

!

How can we guarantee
correcthess when writing?

@koenighotze

The outcome of a business
operation depends on the
orcer of events

@koenighotze

"Only withdraw money, if the bank
account holds enough money!"

"Only withdraw money, if the bank
account holds enough money!"*

*Actually, a real bank would not want
such a business rule. They earn money
if you overdraw your account. An
overdraft fee is one of the most
expensive fees banks charge. Just
saying..

@koenighotze

-7 EUR

@koenighotze

et's shuffle

100 EUR
* 90 EUR

140 EUR

43 EUR

@koenighotze

The aggregate is responsible for
enforcing business invariants

@koenighotze

| want In! *

Nope!
Not enough money!

@koenighotze

The aggregate Is the
“transaction boundary’

@koenighotze

Just use a
database for
handling
transactions

@koenighotze

Maybe not

@koenighotze

Are YOUR systems
single-threaded?

@koenighotze

Check if

Account account holds Account
Microservice enough money Microservice

Check 1f
account holds
enough money

MoneyWithdrawn

MoneyWithdrawn () Seposit

- a amount: 100 EUR

@koenighotze

Validation against a read model
Is prone to Inconsistencies

@koenighotze

Just use
distributed
transactions!

@koenighotze

...Just JoKing

@koenighotze

Just manage
transactions with
a database and
use single-writer

@koenighotze

=1

Couchbase
Kafka Connect SOrde.ar
S | ervice
ource / Q \
Order Q(__

// Order
Proposed \Q Validated

Event Event

KAFKA

https://www.confluent.io/blog/messaging-single-source-truth/

@koenighotze

Quick tip for finding friends in ops:

Ask them just to install and
maintain production grade Kafka
and Couchbase installations on AWS

@koenighotze

Optimistic concurrency control

From Wikipedia, the free encyclopedia

Optimistic concurrency control (OCC) is a concurrency control method applied to
transactional systems such as relational database management systems and software
transactional memory. OCC assumes that multiple transactions can frequently complete
without interfering with each other. While running, transactions use data resources without
acquiring locks on those resources. Before committing, each transaction verifies that no other
transaction has modified the data it has read. If the check reveals conflicting modifications,
the committing transaction rolls back and can be restarted.!!! Optimistic concurrency control
was first proposed by H.T. Kung and John T. Robinson.!?]

https://en.wikipedia.org/wiki/Optimistic_concurrency_control

@koenighotze

O0CC assumes that multiple transactions\

can frequently complete without
interfering with each other.

@koenighotze

~each transaction verifies that no other
transaction has modified the data 1t has
read...

@koenighotze

The happy path

holderid: ... |
accountNumber: ... amount: 10 EUR
amount: ...

amount: 100 EUR

@koenighotze

holderld: ...
accountNumber: ...
amount: ...

amount: 10 EUR

Account.lastEventNumber(5)

Stream.lastEventNumber(5)

amount: 100 EUR

@koenighotze

holderid: ...
accountNumber: ... amount: 10 EUR
amount: ...

amount: 100 EUR

@koenighotze

The not-so-happy path

holderid: ...
accountNumber: ...
amount: ...

amount: 10 EUR

@koenighotze

holderld: ...
accountNumber: ...
amount: ...

nt-123

Account.lastEventNumber(4)

Stream.lastEventNumber(5)

amount: 10 EUR

amount: 100 EUR

@koenighotze

PUT /account/1234

Account
Microservice

@koenighotze

PUT /account/1234

Account

_ _ { aggregate, lastVersionNumber } = readAggregateFromStream(...)
Microservice

events = executeBusinessLogic(...)

emitEvents('account', '1234', events, lastVerstionNumber)

@koenighotze

PUT /account/1234

Account
Microservice

{ aggregate, lastVersionNumber } = readAggregateFromStream(...)

events = executeBusinessLogic(...)

emitEvents('account', '1234', events, lastVersitonNumber)

@koenighotze

PUT /account/1234

Account
Microservice

{ aggregate, lastVersionNumber } = readAggregateFromStream(...)

events = executeBusinessLogic(...)

emitEvents('account', '1234', events, lastVersitonNumber)

@koenighotze

PUT /account/1234

Account
Microservice

{ aggregate, lastVersionNumber } = readAggregateFromStream(...)

events = executeBusinessLogic(...)

emitEvents('account', '1234', events, lastVerstionNumber)

@koenighotze

PUT /account/1234

Account
Microservice

1 aggregate; lastVersionNumber F = readAggregateFromStream(. ..)

events = executeBr4 sslogic(...)

emitEvents('accoun'/, 1234 eV tS 8 lastVersionNumber |
Optimistic -~
~concurrency control)

@koenighotze

And Kafka?

) Kafka / KAFKA-2260
&° Allow specifying expected offset on produce

Details
Type: Improvement Status: m
Priority: ¥ Minor Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: producer
Labels: None

Description

I'd like to propose a change that adds a simple CAS-like mechanism to the Kafka producer. This update has a small footprint, but enables a
bunch of interesting uses in stream processing or as a commit log for process state.

v Andy Bryant added a comment - 27/Jul/18 04:14

& Would prove very handy in event source based designs

v Russell Ferriday added a comment - 9 hours ago

This would enable full-on eventsourcing on Kafka, without having to restrict to single-thread designs.
One example of a great (>250 github star) FOSS project being held back by this:

https://github.com/johnbywater/eventsourcing/issues/108

Can we see this soon?

@koenighotze

1

Allow specifying expected offset on produce

A DOCRN
KA-ZZ0U

Details

Improvement tatus OPEN
v Minor Resolution Unresolved

None Fi arsion/s: None

added a comment - 27/Jul/18 04:14

« Would prove very handy in event source based designs

Andy Bryant added a comment - 27/Jul/18 04:14

& Would prove very handy in event source based designs

Russell Ferriday added a comment - 9 hours ago

This would enable full-on eventsourcing on Kafka, without having to restrict to single-thread designs.
One example of a great (>250 github star) FOSS project being held back by this:

Hne/laithith coamlichnhwvwatar/avantent ircinal/iceriac /108
ntt pPS.//glitnu D.com/ joni 1D ywalter/evenisourcing/iIssues/ 108

Can we see this soon?

@koenighotze

§€ Allow specifying expected offset on produce

Details
Improvement ' OPEN
¥ Minor Unresolved
None None

This would enable full-on eventsourcing on Kafka, without having to restrict to single-thread designs.
One example of a great (>250 github star) FOSS project being held back by this:

ndy Bryant added a comment - 27/Jul/18 04:14

& Would prove very handy in event source based designs

2|l Ferriday added a comment - 9 hours ago

This would enable full-on eventsourcing on Kafka, without having to restrict to single-thread designs.
One example of a great (>250 github star) FOSS project being held back by this:

Can we see this soon?

@koenighotze

Kaftka / KAFKA-2260
Allow specifying expected offset on produce

Details
Type: Improvement Status: m
Priority: ¥ Minor Resolution: Unresolved
Affects Version/s: None Fix Version/s: None

Type:

Status:

Priority: o

Unresolved

Affects Version/s: Fix Version/s: None

Andy Bryant added a comment - 27/Jul/18 04:14

& Would prove very handy in event source based designs

Russell Ferriday added a comment - 9 hours ago

This would enable full-on eventsourcing on Kafka, without having to restrict to single-thread designs.
One example of a great (>250 github star) FOSS project being held back by this:

https://github.com/johnbywater/eventsourcing/issues/108

Can we see this soon?

@koenighotze

Scalability without locks
Consistency

Design choice

Super-simple programming logic

d

down the road

igh an

| m—

N

RS l’%
wﬂ/.iltﬂm.ﬂdr/ W.,,ﬂ,.mm.i BRSNS
' *Mn4 5 ..la.a.//‘.'/e.l.ul.h%’ mﬁ‘ A ‘

Ju.. N
ST
e R / N

~
-

% ! D.J £ /
NS Ww,ﬁé ‘
WS fd’% I/I,/,..%-wyr/ qu.n&. ¥
N /J.» I NS \r
=i .m..au.fh.ﬂw /:./JW;W,V A AR
o N T
S R NS

ings

0
ik
o
._h
C
O
-
T
O
>

th

—

INg

)
C
O

Vers
break

A

) : -~

& -
'\'.)
XN

How can we deal with
versions without going crazy?

@koenighotze

Just use semantic
versioning and typed
events

@koenighotze

Consumer

@koenighotze

...then change some event

@koenighotze

Consumer

£
e

@koenighotze

InvalidClassException ObjectStreamException {

@koenighotze

Gosh...just apply
“Double Write”

@koenighotze

@koenighotze

S0 | S) WSS) S

Should I process o Consumer

@koenighotze

Or wait for a V2..which
might never arrive?

Consumer

@koenighotze

MoneyDeposited vl
MoneyDeposited v2

MoneyDeposited_v100

MoneyDeposited_vlHandler
MoneyDeposited_v2Handler

MoneyDeposited v100Handler

@koenighotze

Just use an Upcaster

Ve
R

@koenighotze

f: vi->v2

V

Consumer

@koenighotze

5 months later...

f: vi->v2
f: v2->v3
f: v3->v4

f: vO7->v98
f: v98->v99
f: v99->v100

—

A4

Consumer

@koenighotze

Good luck maintaining
that monster

@koenighotze

‘ncompatible event changes
Indicate a new event

@koenighotze

Prefer simple, text-based,
numan readable events

@koenighotze

Fancy speak for JSON

@koenighotze

"eventType": "MoneyTransferred",
"aggregateld": "1234",

II.'LbanII : IIDE12II,
"accountNumber": "12312312",
"amount": 10,

‘currency”: "EUR"

@koenighotze

And correctness?

String-ly typed events work
really well

@koenighotze

Weak schema to the rescue

@koenighotze

"$schema": "http://json-schema.org/draft-07/schema",
"title": "UserCreated",
"description”: "Creates a user",
"type": "object",
"properties": {
"userId": {
"description”: "The new user's ID",
"type": "string",
"format": "uuid"
}
¥

"additionalProperties”: false,
"required": |
‘userld”

]

@koenighotze

"$schema”: "http://json-schema.org/draft-07/schema”,
"title”: "UserCreated"”,

‘description”: "Creates a user”,
"type": "object",
"properties": {
"userId": {
"description”: "The new user's ID",

IltypelI: lIStr.'Lngll,
"format": "uuid"

}
}s

"additionalProperties”: false,
"required": [
‘userld”

|

@koenighotze

"$schema”: "http://json-schema.org/draft-07/schema",
"title": "UserCreated",
"description”: "Creates a user",
"type": "object",
"properties": {
"userId": {
"description”: "The new user's ID",

1 4 "n .,

Lype 'string”,
format": "uuuid"

}
}

"additionalProperties”: false,
"required": [
‘userId”

]

}

@koenighotze

assertIsValid(eventData, ajv.compile(schema))
event = newkvent(

1

aggregateld,
aggregatelype,
eventData

@koenighotze

assertIsValid(eventData, ajv.compile(schema))
event = newkvent(

{

aggregateld,
aggregatelype,
eventData

@koenighotze

Schema-on-Read

@koenighotze

Reusing event data?

@koenighotze

@koenighotze

Just copy data into
different events, just
S0 convenient

@koenighotze

' transactionld: ...
accountNumber: ...

amount: ...
currency: ...
bookingTime: ...
purpose: ...

@koenighotze

transactionld: ...
accountNumber: ...
amount: ...
currency: ...
bookingTime: ...
purpose: ...

tagid: ...
categoryName: “...”

transactionid: ...
amount: ...
currency: ...

@koenighotze

transactionld: ...
accountNumber: ...
amount: ...
currency: ...
bookingTime: ...
purpose: ...

tagid: ...
categoryName: “...”

transactionld: ...
amount: ...
currency: ...

@koenighotze

But | need to
display the
transaction

purpose, too

@koenighotze

transactionld: ... tagid: ...
accountNumber: ... categoryName: “...”

amount: ... transactionld: ...

currency: ... amount: ...
bookingTime: ... currency: ...

purpose: ... ??7?

@koenighotze

The lossy event

@koenighotze

Only reference aggregates
via their root id or event ids

@koenighotze

eventld:...
transactionld: ...
accountNumber: ...

amount: ...
currency: ...

bookingTime: ...

purpose: ...

tagid: ...
categoryName: “...”
txBookedEventid: ...
transactionlid: ...

@koenighotze

faghd:".
\>categoryName:
purpose: “...”
transactionid: ...

Domain service

TransactionBooked TransactionTagged
W a Y a)
eventld:... txBookedEventld: ...
transactionlid:
| | transactionld: ...
_ . 0 -

@koenighotze

Good candidate for a

read model L |tagld: ...
Domain service >\, |categoryName: "...”
/ —|purpose: “...”

transactionid: ...
amount: ...
currency:

N

_Vv | _
TransactionBooked | TransactionTagged
\| *)

eventld:... txBookedEventld: ...
transactionld: ... transactionld:
_ Y, _ Y,
0 . % 0 %

@koenighotze

Don't copy parts of an event

Prefer building use case
specific projections

@koenighotze

How do | handle large streams?

@koenighotze

How can you handle event data
over a long period of time?

@koenighotze

You don't

Just create a snapshot
of the stream

@koenighotze

Year's end procedure

Year end — also known as an accounting reference date — is the
completion of an accounting period. At this time, businesses
need to carry out specific procedures to close their books.

https://debitoor.com/dictionary/year-end

@koenighotze

businesses
need to carry out specific procedures to close their books.

https://debitoor.com/dictionary/year-end

@koenighotze

Copy-Transform

a.k.a. event sourcing
refactoring powertool

@koenighotze

2017

@koenighotze

2018

2017

! DELETE
T THIS!

@koenighotze

2017

Hic sunt
leones

2018

@koenighotze

Same idea If you need to
remodel your domain!

@koenighotze

The FooANDBarEvent

@koenighotze

TransfTerredAndBooked
| B ()

Typical odelling
mistake

@koenighotze

Transferred

TransfTerredAndBooked

Booked

@koenighotze

The devil is In the detail

e - p——

amount: 97(Euro
withdrawnAt: 18-08-30T08:58:26.624

@koenighotze

Just update the
event Iin the
eventstore!

@koenighotze

transactions

currency="EUR"’
eventId='231233"

@koenighotze

Challenges?

Consumer

@koenighotze

Update ..

| already know
that event.

Why should |
re-read?

Consumer

(Y)/

@koenighotze

Ok. Then just use
compensation events

@koenighotze

The cancelled or corrected event

@koenighotze

Partial compensation?

@koenighotze

amount: 97 Euro

MoneyTransferAmountCorrected
eventld: 9

/;;ount: 97 EUR
reasonEventId: 8

@koenighotze

Full compensation
do as accountants do

@koenighotze

amount: 97 Euro

MoneyTransferCancelled
eventId: 2

reasonEventId: 1
reason: ..

amount: 97 EUR

@koenighotze

A full compensation Is the
explicit reason for compensation

@koenighotze

@koenighotze

*x X %

P S

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)

* *

* o ok

@koenighotze

*x X %

Article 17

Right to erasure (‘right to be forgotten’)

1. The data subject shall have the right to obtain from the controller the erasure of personal data concerning him or
her without undue delay and the controller shall have the obligation to erase personal data without undue delay where

one of the following grounds applies:

X

@koenighotze

Just encrypt and throw
the key away

@koenighotze

Payload Payload Payload

Payload Payload Payload

Payload Payload Payload

@koenighotze

‘Please delete all my data”

Deletion Is effectively deleting
the stream-specific key

@koenighotze

Payload Payload Payload

Payload Payload

Payload Payload Payload

@koenighotze

Challenges?

Key administration
Finding what needs to be
deleted
Storage implications
Coding complexity
Dashboards, Monitoring

@koenighotze

Being able to delete Is
awesome

@koenighotze

Cascading deletes with
tombstones

@koenighotze

“Please delete USER-456"

@koenighotze

@koenighotze

@koenighotze

deleteStream(‘User-456’)

delete

emit
tombstone
event

@koenighotze

deleteStream(‘Bankaccount-123"')

emit
tombstone event
delete

@koenighotze

1. The data subject shall have the rj e of personal data concerning him or

her without undue delay and the cont onal data without undue delay where
one of the following grounds applies:

@koenighotze

What about dependencies
between aggregates?

@koenighotze

Just anonymise the

@koenighotze

+* KX &

Recital 26

EU GDPR
(26) The principles of data protection should apply to any information
concerning an identified or identifiable natural person.

Personal data which have undergone pseudonymisation, which could
be attributed to a natural person by the use of additional information
should be considered to be information on an identifiable natural

person.

PR * P

@koenighotze

<+ KX &

Personal data which have undergone pseudonymisation, which could
be attributed to a natural person by the use of additional information
should be considered to be information on an identifiable natural

person.
PR * PR

@koenighotze

What if | delete a confluence account?

@koenighotze

Created by
Anonymous

Jun 25, 2018

S —

@koenighotze

Public/private data

@koenighotze

@koenighotze

er ois <) (IR

@koenighotze

ete s o> [ERE R

@koenighotze

You may be able to keep
references to the public data

@koenighotze

Surprise: No easy answers

@koenighotze

Ask your lawyer or CISO

@koenighotze

Microservices + DDD + ES="%
Needs more up-front design
You can refactor, you can clean up

Not enough In-depth books
Avold framework lock-In

~orget this talk...
read some papers

@koenighotze

The Dark Side of Event Sourcing:
Managing Data Conversion

B Microsoft

Michiel Overeem', Marten Spoor!, and Slinger Jansen?

ExpLORING CQRS AND
EVENT SOURCING

DOMAIN-DRIVEN

"DESIGN

A journey into high scalability, availability,
and maintainability with Windows Azure

Versioning in an Event
Sourced System

patterns & practices

Gregory Young

@koenighotze

http://files.movereem.nl/2017saner-eventsourcing.pdf
https://leanpub.com/esversioning
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj554200(v=pandp.10)

Choose the “right” tool?

(:) EVENT STORE. Community Support Blog Documentation Downloads Contact

The stream database written from the

>
i’ 0
ground up for event sourcing. O /
v

Get started with Event Store Get support /

eventstore.org

@koenighotze

Thank
you!

Questions and

Feedback?
@Koenighotze

@koenighotze

